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We propose a joint nonlinear electrical equalization approach in coherent optical discrete-Fourier-transform
spread orthogonal-frequency-division-multiplexing (DFT-spread-OFDM) systems with polarization divi-
sion multiplexing (PDM). This method is based on an adaptive Volterra series expansion for nonlinear
distortions of two orthogonal polarizations. The nonlinear electrical equalization is validated through
numerical simulation of 100-Gb/s quadrature phase shift keying and 200-Gb/s 16 quadrature amplitude
modulation PDM DFT-spread-OFDM systems.
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The demand for high-capacity optical transmission has
resulted in the rapid development of coherent optical
(CO) systems. Linear impairments, such as fiber chro-
matic dispersion (CD) and polarization mode disper-
sion (PMD), can be compensated in principle for CO
communication. Thus, fiber capacity is ultimately lim-
ited by nonlinearity and amplified spontaneous emission
(ASE) in optical amplifiers. Given that the ASE noise
corresponds to the well known Shannon limit and can-
not be eliminated, fiber nonlinearity remains one of the
dominant impairments that degrade system performance
and capacity[1−3]. Numerous nonlinear mitigation tech-
niques, such as digital back-propagation (BP)[4], adap-
tive nonlinear electrical equalization (NLEE) based on
Volterra series[5−7], and maximum-likelihood sequence
estimation (MLSE)[8], have been studied. BP is sensi-
tive to the sampling and processing rate, whereas the
MLSE cannot be easily adapted to different systems[9].
Thus, NLEE has been applied because it is more adap-
tive to compensate the nonlinearity from optical fiber
Kerr effects. Gao et al. first demonstrated the validity of
Volterra-based NLEE in 10-Gbaud/s non-return-to-zero
(NRZ)-quadrature phase shift keying (QPSK) system
for a 1 600-km simulation and a 400-km experiment[5,6].
Pan et al. extended the NLEE to a 14-Gbaud/s 16
quadrature amplitude modulation (16QAM) system with
1 200-km simulation and a 28-Gbaud/s QPSK system
with a 1 600-km simulation[10]. Weidenfeld et al. ap-
plied the NLEE to a long-haul orthogonal-frequency-
division-multiplexing (OFDM) system over a of 2 000-km
simulation[11]. Pan et al. discussed the position of the
NLEE before and after transmission in the simulation of
a 100-Gb/s CO-OFDM system[12].

The aforementioned studies mainly focused on the non-
linear equalization in single polarization system. How-
ever, intra-channel nonlinear distortions also result from
interactions from the orthogonal polarization (OP) for
a dual-polarization (DP) system. Dou et al. proposed
a predistortion method in a 43-Gb/s DP-QPSK system
with joint equalization of two polarizations[13]. Liu et

al. introduced a frequency-domain Volterra series trans-

fer function method in a 1 000-km simulation for a 256-
Gb/s DP-16QAM transmission system[9]. However, both
methods are relatively sensitive to the values of the opti-
cal fiber parameters and less adaptive to be implemented.
We applied the joint equalization into NLEE and im-
plemented it into a discrete-Fourier-transform spread
OFDM (DFT-spread-OFDM) system. The DFT-spread-
OFDM system has a lower peak-to-average power ratio
(PAPR) and better nonlinear tolerance compared with
the conventional OFDM system. Moreover, the NLEE
method can realize blind equalization because it does not
require prior knowledge of the fiber link parameters to
calculate the Volterra kernels. The kernels are adaptively
determined using recursive least square (RLS) method.
This advantage provides enough flexibility when signals
are routed differently in optical networks.

Nonlinear optical propagation in fiber systems are well
modeled by the Volterra series expansion[14]. The solu-
tion of the third-order nonlinear distortion for an input
signal A(n) can be written as

∆A(n) =
N

∑

l=−N

N
∑

m=l

N
∑

k=m

Hl, m, kA(l)A(m)A∗(k), (1)

where l, m, n, and k are time indices; Hl, m, k refers to
the third-order Volterra kernels for the nonlinear trans-
fer function. The intrachannel nonlinear impairments of
polarization x also come from the interactions with po-
larization y for a DP system (Fig. 1).

The solutions of ∆Ax(n) and ∆Ay(n) are shown in
Fig. 1 and expressed as

∆Ax(n) =

N
∑

l=−N

N
∑

k=l

Ax(n + k − l)

· [Ax(l)A∗

x(k) + Ay(l)A∗

y(k)]Hl,k,n+k−l, (2)

∆Ay(n) =

N
∑

l=−N

N
∑

k=l

Ay(n + k − l)

· [Ax(l)A∗

x(k) + Ay(l)A∗

y(k)]Hl, k, n+k−l. (3)
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Fig. 1. Diagram for the calculation of intrachannel nonlinear-
ity of input signals.

Considering the different values of l and k, we can fur-
ther express the equation for ∆Ax(n) as

∆Ax(n) =

N
∑

l=−N

Hl[Ax(l)(|Ax(l)|2 + |Ay(l)|2)]

+

N
∑

l=−N

N
∑

k=l

Hl, n+k−l[Ax(l)(|Ax(n + k − l)|2

+ |Ay(n + k − l)|2)]

+

N
∑

l=−N

N
∑

k=l

Hl, n+k−l[Ax(n + k − l)|Ax(l)|2

+ Ax(l)Ay(n + k − l)A∗

y(l)]

+
N

∑

l=−N

N
∑

k=l

Hl, k, n+k−l[Ax(l)Ax(n+k−l)A∗

x(k)

+ Ax(l)Ay(n + k − l)A∗

y(k)]. (4)

Equation (4) provides a general closed-form solution of
the intra-channel nonlinearity. ∆Ay(n) can be expressed
similarly. The self-phase modulation is considered as
the first term, the intra-channel cross-phase modulation
as the second and third terms, and the intra-channel
four-wave-mixing as the last term. Note that only those
pulses with indices satisfying l + m− k = n could induce
sizeable distortions to the system[6]. Thus, we replace m
with n+k−l in Fig. 1 and Eqs. (2)–(4). All Volterra ker-
nels in Eq. (4) can be calculated using the RLS method.

Figure 2 shows the diagram for RLS. We can obtain
the Volterra kernels by minimizing the cost function
e(n)[e(n) = A(n) − d(n)]. We need to send a short train-
ing sequence to obtain the expected d(n) signal. For
instance, a length of 200 for the training sequence should
be enough for a symbol with a fast Fourier transform
(FFT) size of 4096, and no more training sequences are
required for the following symbols. The expected signal
can be generated recursively. This method does not re-
quire prior knowledge of the fiber link parameters and
can eventually provide more flexibility for the transmis-
sion system.

The number of operations per symbol is proportional to
N2 in the scheme of conventional Volterra-based nonlin-

ear equalizers, where N refers to the total term number
of the equalizers[15]. Although nonlinear distortions from
both polarizations are considered, the basic structure of
our NLEE is still Volterra-based. Therefore, the compu-
tation complexity is at the same level as the conventional
nonlinear equalizers, which is also proportional to N2.
Notably, the value of N is decided by the tap length of
NLEE, which must be long enough to consider the non-
linear inter-symbol interference between the overlapped
optical pulses. Therefore, the tap length is related to
the accumulated chromatic dispersion in the system. In
particular, the tap length in our system has been opti-
mized to 15. Thus, N is equal to 88 and approximately
1.2e4 multiplications and 1.2e4 additions are involved in
computation.

Figure 3 illustrates the digital signal processing (DSP)
block diagrams for the DFT-spread-OFDM scheme. At
the encoder, the transmitted binary data are mapped into
QAM or phase shift keying (PSK) signals before they are
grouped into M -symbol blocks. After an M -point DFT
to produce a frequency domain representation of the in-
put symbols, the M -point DFT output is mapped to N
(N > M) orthogonal subcarriers, followed by the N -
point inverse FFT (IFFT), which transforms the subcar-
riers into time domain. Cyclic prefix (CP) is inserted for
each block and then the data sequence is transmitted. At
the decoder, the N -point DFT transforms the signal into
frequency domain, and channel equalization is then per-
formed. The equalized signal is transformed into time do-
main again by the M -point inverse DFT (IDFT) for deci-
sion. The DFT-spread-OFDM system has a significantly
lower PAPR compared with the conventional OFDM sys-
tem. Therefore, it suffers less nonlinear impairment and
enhances the nonlinear tolerance of the system[16]. The
DFT-spread-OFDM system could be more flexible than
the traditional single-carrier systems because it utilizes
frequency-domain equalization and subcarrier mapping.

Fig. 2. Diagram for the RLS method.

Fig. 3. DSP block diagrams for (a) encoder (b) decoder in
DFT-spread-OFDM systems. S/P: serial/paralle; P/S: paral-
lel/serial; LPF: low-pass filter.
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Furthermore, the orthogonality of the system can be
guaranteed to be similar to the OFDM system because
of the application of DFT processing[17].

Figure 3(b) shows the implementation of the NLEE
method. We assume that N=4096, M=3424, and
CP=240. The sampling rate is chosen to be 37 GS/s.
A net bit rate of 100 Gb/s for QPSK and 200 Gb/s for
16QAM will be obtained when we set a preamble ra-
tio to 2.44% and a redundancy ratio to 12% to include
overhead for Ethernet (64B/66B) and forward error cor-
rection (FEC) coding[18].

The simulations are conducted via commercial soft-
ware (VPI) Transmission Maker 8.6, VPI systems, USA.
The fiber link consists of multi-span of 80-km standard
single-mode fiber (SSMF) with an average loss of 20 dB
each. Fiber dispersion is 17 ps/(km·nm) and fiber non-
linear coefficient is 1.32 km−1·W−1. An erbium-doped
fiber amplifier with a noise figure of 5 dB fully compen-
sates the fiber attenuation. Noinline CD compensation
is used. The transmission length for the simulation is
4 000 km (50 × 80 km) for QPSK and 1 600 km (20 ×
80 km) for 16QAM. We evaluated the system perfor-
mance by comparing the required optical signal-to-noise
ratio (OSNR) at a bit error rate (BER) target of 10−3

with and without NLEE compensation.
As mentioned above, the nonlinear effects from

OP should not be neglected in the polarization di-
vision multiplexing (PDM) systems. Figsures 4 and
5 illustrate the Q-factor performance as a function
of launch power. The curves denote the following:
(1) square, without NLEE; (2) circle, NLEE with-
out considering the distortions from OP; (3) triangle,
NLEE with distortions from OP. The BER is converted

Fig. 4. (a) Q-factor performance as a function of launch power
for a 100-Gb/s QPSK DFT-spread-OFDM signal transmit-
ting over 4 000-km SSMF; constellations for QPSK signal at
–3-dBm launch power (b) without and (c) with NLEE con-
sidering distortions from OP.

 

Fig. 5. (a) Q-factor performance with different launch powers
for a 200-Gb/s 16QAM DFT-spread-OFDM signal transmit-
ting over 1 600-km SSMF; constellations for 16QAM signal at
–3-dBm launch power (b) without and (c) with NLEE con-
sidering distortions from OP.

to QBER in dB using the relationship QBER =
20 log

[√
2erfc−1 (2BER)

]

, where erfc−1 is the inverse

complementary error function. A BER target of 10−3

corresponds to a QBER value of 9.8 dB. The transmis-
sion performance declines at low launch power because
of decreased OSNR and at high launch power because
of increased nonlinear impairments. The Q-factor for
nonlinear equalization with OP reaches its maximum
value with a launch power of –3 dBm when the Q im-
provement is 0.88 dB in QPSK system and 0.68 dB in
16QAM system. Larger improvement for the Q-factor
can be observed in both the QPSK and 16QAM systems
with an increase in the launch power.

Figures 6 and 7 demonstrate the required OSNRs at
10−3 BER target versus different launch powers. The
required OSNR values corresponding to the electrical
equalizations with and without nonlinear compensation
remain almost the same when the launch power is less
than –4 dBm. System performance clearly improves
and the required OSNR reduces significantly when the
launch power is increased. For instance, the required
OSNR reduction is 1.1 dB at –3 dBm and 2.5 dB at
–2 dBm for the QPSK system and 0.5 dB at –3 dBm and
1.8 dB at –2 dBm for the 16QAM system. We can obtain
better system performance with joint nonlinear equaliza-
tion, which mitigates distortions from OP. The required
OSNR can be further reduced by 0.6 and 1.3 dB at –
2 and –1 dBm launch powers, respectively, in the QPSK
system. The reduction difference is more than 1.5 dB
for nonlinear equalization with and without OP for the
16QAM system at the launch power of –1 dBm.

In conclusion, we propose the nonlinear equalization
scheme in CO PDM DFT-spread-OFDM systems. The
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Fig. 6. Required OSNR at 10−3 BER versus launch power in
QPSK system.

Fig. 7. Required OSNR at 10−3 BER versus launch power in
16QAM system.

NLEE compensation based on Volterra theory is demon-
strated, and a joint equalization of nonlinear distortions
from the OP in DP systems is applied. The NLEE
method is validated by numerical simulation of 100-Gb/s
QPSK and 200-Gb/s 16QAM PDM DFT-spread-OFDM
systems. The simulation results show that NLEE appli-
cation with joint equalization can significantly improve
system performance at high launch power.
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